Urban Land Cover Classification of Oblique Aerial Imagery Using Object-based Image Analysis Method

نویسندگان

  • Jyun-Ping Jhan
  • Ya-Ching Hsu
  • Jiann-Yeou Rau
چکیده

By means of airborne multiple camera imaging system, we can acquire vertical and oblique aerial images (VAI and OAI) at the same time. In addition to the reduction of data cost, the OAI can also strengthen the imaging geometry during aerial triangulation and be applied on automatic façade texture mapping. With the development of image matching technique, instead of airborne laser scanning (ALS), we can obtain surface point clouds by dense matching through both VAIs and OAIs. Comparing to the ALS data that were affected by the laser scanning angle, the photogrammetric points can provide much more information on the façade of buildings since the given information from the OAI. Therefore, the use of OAI in building verification and detection, 3D GIS, digital maps or other cyber-city related applications. In this study, we perform image classification using the original oblique aerial imagery and object-based image analysis (OBIA) method. We classify the OAI into six classes namely tree, grass, façade, roof, road and others. In OBIA, we utilize the multiresolution segmentation algorithm to separate the image into objects by merging pixels with similar color and shape homogeneity. Then, the objects are classified by different features such as color, shape, texture and object related features. In our study, we also use the “height map” and “gradient map” generated by back projecting the dense matched point clouds to the OAI to assist for urban object detection. The classification result shows that we can differentiate façade and roof from buildings successfully with the assistant of the height and gradient information. In the meanwhile, the classification result can further offer the semantic information from the OAI to 3D building models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data

Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...

متن کامل

Object-based urban detailed land cover classification with high spatial resolution IKONOS imagery

Improvement in remote sensing techniques in spatial/spectral resolution strengthens their applicability for urban environmental study. Unfortunately, high spatial resolution imagery also increases internal variability in land cover units and can cause a ‘salt-and-pepper’ effect, resulting in decreased accuracy using pixel-based classification results. Region-based classification techniques, usi...

متن کامل

Object-based Land Cover Classification of Urban Areas Using Vhr Imagery and Photogrammetrically-derived Dsm

Object-based image analysis is becoming increasingly popular in classification of very high resolution (VHR) imagery over urban areas. The spectral resolution of VHR imagery (generally they possesses 1 pan and 4 multispectral bands), however, is limited and insufficient for differentiating many urban land cover classes. Due to the spectral similarity of building roofs, roads and parking lots, s...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013